Skip to content

Statistics


Entropy

This indicator attempts to quantify the unpredictability of the data, or equivalently, its average information. It is a rolling entropy calculation.

Sources

Parameters:

Name Type Description Default
close Series

close Series

required
length int

The period. Default: 10

None
base float

Logarithmic Base. Default: 2

None
offset int

Post shift. Default: 0

None

Other Parameters:

Name Type Description
fillna value

pd.DataFrame.fillna(value)

Returns:

Type Description
Series

1 column




Rolling Kurtosis

Calculates a rolling Kurtosis.

Parameters:

Name Type Description Default
close Series

close Series

required
length int

The period. Default: 30

None
offset int

Post shift. Default: 0

None

Other Parameters:

Name Type Description
fillna value

pd.DataFrame.fillna(value)

Returns:

Type Description
Series

1 column

Danger

Possible Data Leak




Rolling Mean Absolute Deviation

Calculates a rolling Mean Absolute Deviation (MAD.

Parameters:

Name Type Description Default
close Series

close Series

required
length int

The period. Default: 30

None
offset int

Post shift. Default: 0

None

Other Parameters:

Name Type Description
fillna value

pd.DataFrame.fillna(value)

Returns:

Type Description
Series

1 column




Rolling Median

Calculates a rolling Median.

Sources

Parameters:

Name Type Description Default
close Series

close Series

required
length int

The period. Default: 30

None
offset int

Post shift. Default: 0

None

Other Parameters:

Name Type Description
fillna value

pd.DataFrame.fillna(value)

Returns:

Type Description
Series

1 column




Rolling Quantile

Calculates a rolling Quantile.

Parameters:

Name Type Description Default
close Series

close Series

required
length int

The period. Default: 30

None
q float

The quantile. Default: 0.5

None
offset int

Post shift. Default: 0

None

Other Parameters:

Name Type Description
fillna value

pd.DataFrame.fillna(value)

Returns:

Type Description
Series

1 column


NOTICE

Thanks to all those that have sponsored and dontated to the library in the past! Your support has been greatly appreciated! 🙏

However, future releases are on definite hold until 100+ donations of $150+ have been received via Buy Me a Coffee.

Help keep this library and application the best in it's class!




Rolling Skew

Calculates a rolling Skew.

Parameters:

Name Type Description Default
close Series

close Series

required
length int

The period. Default: 30

None
offset int

Post shift. Default: 0

None

Other Parameters:

Name Type Description
fillna value

pd.DataFrame.fillna(value)

Returns:

Type Description
Series

1 column

Danger

Possible Data Leak




Rolling Standard Deviation

Calculates a rolling Standard Deviation.

Parameters:

Name Type Description Default
close Series

close Series

required
length int

The period. Default: 30

None
ddof int

Delta Degrees of Freedom. Default: 1

None
talib bool

If installed, use TA Lib. Default: True

None
offset int

Post shift. Default: 0

None

Other Parameters:

Name Type Description
fillna value

pd.DataFrame.fillna(value)

Returns:

Type Description
Series

1 column

Note
  • TA Lib does not have a ddof parameter.
  • The divisor used in calculations is: N - ddof, where N is the number of elements. To use ddof, set talib=False.




TD Ameritrade's Think or Swim Standard Deviation All

This indicator returns the standard deviation(s) over all the bars or the last n (length) bars.

Sources

Parameters:

Name Type Description Default
close Series

close Series

required
length int

Bars since current/last bar, Series[-1]. Default: None

None
stds list

List of standard deviations in increasing order from the central Linear Regression line. Default: [1,2,3]

None
offset int

Post shift. Default: 0

None

Other Parameters:

Name Type Description
fillna value

pd.DataFrame.fillna(value)

Returns:

Type Description
DataFrame

7+ columns

Note
  • TA Lib does not have a ddof parameter.
  • The divisor used in calculations is: N - ddof, where N is the number of elements. To use ddof, set talib=False.
Danger

Possible Data Leak




Rolling Variance

Calculates a rolling Variance.

Parameters:

Name Type Description Default
close Series

close Series

required
length int

The period. Default: 30

None
ddof int

Delta Degrees of Freedom. Default: 1

None
talib bool

If installed, use TA Lib. Default: True

None
offset int

Post shift. Default: 0

None

Other Parameters:

Name Type Description
fillna value

pd.DataFrame.fillna(value)

Returns:

Type Description
Series

1 column

Note
  • TA Lib does not have a ddof parameter.
  • The divisor used in calculations is: N - ddof, where N is the number of elements. To use ddof, set talib=False.




Rolling Z Score

Calculates a rolling Z Score.

Parameters:

Name Type Description Default
close Series

close Series

required
length int

The period. Default: 30

None
std float

Number of deviation standards. Default: 1

None
offset int

Post shift. Default: 0

None

Other Parameters:

Name Type Description
fillna value

pd.DataFrame.fillna(value)

Returns:

Type Description
Series

1 column


NOTICE

Thanks to all those that have sponsored and dontated to the library in the past! Your support has been greatly appreciated! 🙏

However, future releases are on definite hold until 100+ donations of $150+ have been received via Buy Me a Coffee.

Help keep this library and application the best in it's class!



"Buy Me A Coffee"

ko-fi