Skip to content

Volume


Accumulation/Distribution

This indicator attempts to quantify accumulation/distribution from a relative position within it's High-Low range and volume.

Sources

Parameters:

Name Type Description Default
high Series

high Series

required
low Series

low Series

required
close Series

close Series

required
volume Series

volume Series

required
open_ Series

Optional open Series

None
talib bool

If installed, use TA Lib. Default: True

None
offset int

Post shift. Default: 0

None

Other Parameters:

Name Type Description
fillna value

pd.DataFrame.fillna(value)

Returns:

Type Description
Series

1 column




Accumulation/Distribution Oscillator

This indicator is an AD oscillator. It is interpreted similarly to MACD and APO.

Sources

Parameters:

Name Type Description Default
high Series

high Series

required
low Series

low Series

required
close Series

close Series

required
open_ Series

open Series

None
volume Series

volume Series

required
fast int

Fast MA period. Default: 12

None
slow int

Slow MA period. Default: 26

None
talib bool

If installed, use TA Lib. Default: True

None
offset int

Post shift. Default: 0

None

Other Parameters:

Name Type Description
fillna value

pd.DataFrame.fillna(value)

Returns:

Type Description
Series

1 column

Note

Also known as Chaikin Oscillator

Warning

TA-Lib Correlation: np.float64(0.9989721423605135)

Tip

Corrective contributions welcome!




Archer On Balance Volume

This indicator, by Kevin Johnson, attempts to identify OBV trends using two moving averages. It also attempts to identify if the moving averages are in a long_run or short_run. Finally, it also calculates the rolling maximum and minimum of OBV.

Sources

Parameters:

Name Type Description Default
close Series

close Series

required
volume Series

volume Series

required
fast int

Fast MA period. Default: 4

None
slow int

Slow MA period. Default: 12

None
max_lookback int

Maximum OBV period. Default: 2

None
min_lookback int

Minimum OBV period. Default: 2

None
run_length int

Long and short run period. Default: 2

None
mamode str

See help(ta.ma). Default: "ema"

None
offset int

Post shift. Default: 0

None

Other Parameters:

Name Type Description
fillna value

pd.DataFrame.fillna(value)

Returns:

Type Description
DataFrame

6 columns

Note




Chaikin Money Flow

This indicator attempts to quantify money flow.

Sources

Parameters:

Name Type Description Default
high Series

high Series

required
low Series

low Series

required
close Series

close Series

required
volume Series

volume Series

required
length int

The period. Default: 20

None
offset int

Post shift. Default: 0

None

Other Parameters:

Name Type Description
open_ Series

Optional open Series. Default: None

fillna value

pd.DataFrame.fillna(value)

Returns:

Type Description
Series

1 column

Note

Commonly used with Accumulation/Distribution ad


NOTICE

Thanks to all those that have sponsored and dontated to the library in the past! Your support has been greatly appreciated! 🙏

However, future releases are on definite hold until 100+ donations of $150+ have been received via Buy Me a Coffee.

Help keep this library and application the best in it's class!




Elder's Force Index

This indicator attempts to quantify movement magnitude as well as potential reversals and price corrections.

Sources

Parameters:

Name Type Description Default
close Series

close Series

required
volume Series

volume Series

required
length int

The period. Default: 13

None
mamode str

See help(ta.ma). Default: "ema"

None
drift int

Difference amount. Default: 1

None
offset int

Post shift. Default: 0

None

Other Parameters:

Name Type Description
fillna value

pd.DataFrame.fillna(value)

Returns:

Type Description
Series

1 column




Ease of Movement

This indicator is an oscillator that attempts to quantify the relationship with HLC and volume.

Sources

Parameters:

Name Type Description Default
high Series

high Series

required
low Series

low Series

required
close Series

close Series

required
volume Series

volume Series

required
length int

The period. Default: 14

None
divisor float

Divisor. Default: 100_000_000

None
drift int

Difference amount. Default: 1

None
offset int

Post shift. Default: 0

None

Other Parameters:

Name Type Description
fillna value

pd.DataFrame.fillna(value)

Returns:

Type Description
Series

1 column




Klinger Volume Oscillator

This indicator, by Stephen J. Klinger., attempts to predict price reversals.

Sources

Parameters:

Name Type Description Default
high Series

high Series

required
low Series

low Series

required
close Series

close Series

required
volume Series

volume Series

required
fast int

Fast MA period. Default: 34

None
slow int

Slow MA period. Default: 55

None
signal int

Signal period. Default: 13

None
mamode str

See help(ta.ma). Default: "ema"

None
offset int

Post shift. Default: 0

None

Other Parameters:

Name Type Description
fillna value

pd.DataFrame.fillna(value)

Returns:

Type Description
DataFrame

2 columns




Money Flow Index

This indicator is an oscillator that attempts to quantify buying and selling pressure.

Sources

Parameters:

Name Type Description Default
high Series

high Series

required
low Series

low Series

required
close Series

close Series

required
volume Series

volume Series

required
length int

The period. Default: 14

None
talib bool

If installed, use TA Lib. Default: True

None
drift int

Difference amount. Default: 1

None
offset int

Post shift. Default: 0

None

Other Parameters:

Name Type Description
fillna value

pd.DataFrame.fillna(value)

Returns:

Type Description
Series

1 column

Warning

TA-Lib Correlation: np.float64(0.9959302104966524)

Tip

Corrective contributions welcome!




Negative Volume Index

This indicator attempts to identify where smart money is active.

Sources

Parameters:

Name Type Description Default
close Series

close Series

required
volume Series

volume Series

required
length int

The period. Default: 13

None
initial int

Initial value. Default: 1000

None
offset int

Post shift. Default: 0

None

Other Parameters:

Name Type Description
fillna value

pd.DataFrame.fillna(value)

Returns:

Type Description
Series

1 column

Note

Commonly paired with pvi




On Balance Volume

This indicator attempts to quantify buying and selling pressure.

Sources

Parameters:

Name Type Description Default
close Series

close Series

required
volume Series

volume Series

required
talib bool

If installed, use TA Lib. Default: True

None
offset int

Post shift. Default: 0

None

Other Parameters:

Name Type Description
fillna value

pd.DataFrame.fillna(value)

Returns:

Type Description
Series

1 column




Positive Volume Index

This indicator attempts to identify where smart money is active.

Sources

Parameters:

Name Type Description Default
close Series

close Series

required
volume Series

volume Series

required
length int

The period. Default: 255

None
initial int

Initial value. Default: 100

None
mamode str

See help(ta.ma). Default: "ema"

None
overlay bool

Overlay initial. Default: False

None
offset int

Post shift. Default: 0

None

Other Parameters:

Name Type Description
fillna value

pd.DataFrame.fillna(value)

Returns:

Type Description
DataFrame

2 columns

Note

Commonly paired with nvi




Percentage Volume Oscillator

This indicator is a volume momentum oscillator.

Sources

Parameters:

Name Type Description Default
volume Series

volume Series

required
fast int

Fast MA period. Default: 12

None
slow int

Slow MA period. Default: 26

None
signal int

Signal period. Default: 9

None
scalar float

Scalar. Default: 100

None
offset int

Post shift. Default: 0

None

Other Parameters:

Name Type Description
fillna value

pd.DataFrame.fillna(value)

Returns:

Type Description
DataFrame

3 columns


NOTICE

Thanks to all those that have sponsored and dontated to the library in the past! Your support has been greatly appreciated! 🙏

However, future releases are on definite hold until 100+ donations of $150+ have been received via Buy Me a Coffee.

Help keep this library and application the best in it's class!




Price-Volume

This indicator returns the product of Price & Volume (Price * Volume).

Parameters:

Name Type Description Default
close Series

close Series

required
volume Series

volume Series

required
signed bool

Return with signs. Default: False

None
offset int

Post shift. Default: 0

None

Other Parameters:

Name Type Description
fillna value

pd.DataFrame.fillna(value)

Returns:

Type Description
Series

1 column




Price Volume Rank

This indicator, by Anthony J. Macek, is a simple rank computation with close and volume values.

Sources
  • Anthony J. Macek, June, 1994 issue of Technical Analysis of Stocks & Commodities (TASC) Magazine
  • fmlabs

Parameters:

Name Type Description Default
close Series

close Series

required
volume Series

volume Series

required
drift int

Difference amount. Default: 1

None

Returns:

Type Description
Series

1 column

Signals
  • Buy < 2.5
  • Sell > 2.5




Price-Volume Trend

This indicator attempts to quantify money flow.

Sources

Parameters:

Name Type Description Default
close Series

close Series

required
volume Series

volume Series

required
drift int

Difference amount. Default: 1

None
offset int

Post shift. Default: 0

None

Other Parameters:

Name Type Description
fillna value

pd.DataFrame.fillna(value)

Returns:

Type Description
Series

1 column




Time Segmented Value

This indicator, by Worden Brothers Inc., attempts to quantify the amount of money flowing at various time segments of price and time; similar to On Balance Volume.

Sources

Parameters:

Name Type Description Default
close Series

close Series

required
volume Series

volume Series

required
length int

The period. Default: 18

None
signal int

Signal period. Default: 10

None
mamode str

See help(ta.ma). Default: "sma"

None
drift int

Difference amount. Default: 1

None
offset int

Post shift. Default: 0

None

Other Parameters:

Name Type Description
fillna value

pd.DataFrame.fillna(value)

Returns:

Type Description
DataFrame

3 columns

Note
  • The zero line is called the baseline.
  • Entries and exits signals occur when crossing the baseline.




Volume Heatmap

This indicator attempts to quantify volume trend strength of specified length.

Sources

Parameters:

Name Type Description Default
volume Series

volume Series

required
length int

The period. Default: 610

None
std_length int

Standard devation. Default: 610

None
mamode str

Mean MA. See help(ta.ma). Default: "sma"

None
offset int

Post shift. Default: 0

None

Other Parameters:

Name Type Description
fillna value

pd.DataFrame.fillna(value)

Returns:

Type Description
Series

1 column

Signals
  • Extremely Cold: vhm <= -0.5
  • Cold: -0.5 < vhm <= 1.0
  • Medium: 1.0 < vhm <= 2.5
  • Hot: 2.5 < vhm <= 4.0
  • Extremely Hot: vhm >= 4




Volume Profile

This indicator attempts to quantify volume across binned price ranges of certain width.

Sources

Parameters:

Name Type Description Default
close Series

close Series

required
volume Series

volume Series

required
width int

Source distrubution count. Default: 10

None
sort value

Sort close before splitting into ranges. Default: False

None

Other Parameters:

Name Type Description
fillna value

pd.DataFrame.fillna(value)

Returns:

Type Description
DataFrame

5 columns

Note
  • By default, sorts by date index or chronological.
  • Value Area is not calculated.
Warning

Volume Profile not a Time Series. It is a volume distribution snapshot for an arbitrary DateTime Index and thus can not be concatenated onto the existing DataFrame.




Volume Weighted Average Price

This indicator computes the Volume Weighted Average Price.

Sources

Parameters:

Name Type Description Default
high Series

high Series

required
low Series

low Series

required
close Series

close Series

required
volume Series

volume Series

required
anchor str

VWAP Anchor. Default: "D".

None
bands list

List of positive IntFloat deviations. Default: []

None
offset int

Post shift. Default: 0

None

Other Parameters:

Name Type Description
fillna value

pd.DataFrame.fillna(value)

Returns:

Type Description
Series | DataFrame

DataFrame when bands is set. Default: Series

Note
  • Commonly used with intraday charts to identify general direction.
  • Depending on the index values, it will implement various Timeseries Offset Aliases
Tip
  • Negative bands are computed automatically.




Volume Weighted Moving Average

Computes a weighted average using price and volume.

Sources

Parameters:

Name Type Description Default
close Series

close Series

required
volume Series

volume Series

required
length int

The period. Default: 10

None
offset int

Post shift. Default: 0

None

Other Parameters:

Name Type Description
fillna value

pd.DataFrame.fillna(value)

Returns:

Type Description
Series

1 column


NOTICE

Thanks to all those that have sponsored and dontated to the library in the past! Your support has been greatly appreciated! 🙏

However, future releases are on definite hold until 100+ donations of $150+ have been received via Buy Me a Coffee.

Help keep this library and application the best in it's class!


"Buy Me A Coffee"

ko-fi